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Abstract. We construct a one-dimensional model with two spins and a unique ground state having
infinitely many extreme limit Gibbs states. This model is closely related to unigueness conditions
in one-dimensional models.

1. Introduction

The problem of phase transitions in one-dimensional models is an object of constant interest
during the last few decades [1-13]. Itis well known that if the pair potebtial) of the model
satisfies the conditiop 1., o xU (x) < oo then the model does not exhibit phase transition
[1-3]. In [4] the absence of phase transitions is proved for the antiferromagnetic model with
the pair potential/ (x) = constantx x~1~%, where O0< o < 1. Based on the methods of [4]
in [14] the following conjecture was formulated: any one-dimensional model with discrete (at
most countable) spin space and with a unique ground state has a unique limit Gibbs state if the
spin space of this model is finite or the potential of this model is translationally invariant.

In this paper we construct a model (1) which disproves this conjecture. We prove that
in spite of the fact that the model (1) has a finite spin space and a unique ground state, it has
infinitely many extreme limit Gibbs states.

2. The model

Consider a model of the classical statistical mechanics on the one-dimensional integer lattice
Z* with the Hamiltonian

He) = Y U@®),pB w1~ Y, ¢&) (1)

xeZt;x<0 xeZt; x>0

where the spin variable(x) takes two values 0 and 1, apdB_,,)) is the restriction of the
configurationy(x) to the setB_,(, B_,,n = 1, 2, ... is a half-open interval-{c,, —c,_1),
wherec; = 0,¢, = Y /_; 10¥* atn > 1, the value ofi(x) in (1) is defined by the condition
X € Bfn(x)-
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In order to define the potentid/ of the model, first of all we set two sequences:
a = 2+ (3) andbe = 2+ Y0 (2)', and after that we define the sequence of
half-open intervaldy, k = 1,2,..., Iy = [, bx) and the sequence of positive nhumbers
Py = (ar +by)/2.

The interaction in the model (1) takes place between poingmd the left neighbour
intervalsB,,(,)—1. The potentiall (¢ (x), ¢(B)-1)), Which specifies the interaction between
the spin variablg(x) at the pointc and the restriction of the configuratigrix) to the interval
B, (x)-1 is defined by the relations:

Ulp(x) =1, p(B_yx)-1)) =0

if
Yo e/ - =1
X€ZYxEB_p(1y-1
U((ﬂ(x) = O, (p(B—n(x)—l)) =00
if
Y e/ —cnn) =1
X€ZYxEB_p(1-1
U(p(x) =1, ¢(B_yx)-1) = —In P,
if
Y e/ —cn1) €Lk
XEZYXEB_y(1-1
U(p(x) =0, 9(B_y-1) = —In(1 - Py)
if
D /(e —cu) € It
XEZYXEB_y(1-1
Ulp(x) =1, p(B_y-1) = —In 3
if for any k
Y @/ ¢
x€ZY;x€B_p(x)-1
U(p(x) =0, 9(B_px)-1) = —In3
if for any &

Y e/ —cnr) € L.
X€EZY;XxEB_p(ry)-1
Let Iy = [-V,V]and [-V, 1] = [J;_, B_;. Suppose that the boundary conditions
o*(x), x € Z* — Iy are fixed.
The Hamiltonian in the subsé} is given by
-1 Vv
Hy(p(0)1¢"(x) = Y Ulp(x), p(B_ur-1) — »_ 9(x).

x==V x=0

The restriction of the configuratiap(x) to the intervally, will be denoted bypy (x) and the
set of all configurationgy (x) will be denoted by® (V).
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The finite-volume Gibbs state i® (V) at inverse temperaturg = 7! and boundary
conditionsy®(x) are defined by

P oy (0)|* (x)) = B}, exp(—B Hy (pv (x)|¢* (x)))

whereZy = Zgov(x)e@(V) exp(—B Hy (¢y (x)|¢* (x))) is the partition function.

An extreme limit Gibbs state is the weak limit of finite-volume Gibbs states. It is well
known that the set of all limit Gibbs states coincides with the closed convex hull of the set of
weak limits of finite-volume Gibbs states [16].

A configurationg$” (x) is said to be a ground state, if for any finite perturbatiogx) of
the configuratiops” (x) the expressio (¢’ (x)) — H (8" (x)) is non-negative.

It follows from the construction of the Hamiltonian that the model (1) can be interpreted
as an inhomogeneous Markov chain with two states [16, 17] starting at minus infinity, whose
transition probabilities are defined by the following rule:

If the pointx belongs to the blockB_, ), then the probabilities for the variabjg(x)
depend on the spin variablegx) belonging to the previous block_,,—1, namely if the
density of particles irB_,)—1 is 1, then the probability thai(x) = 1 is 1, if the density of
particles inB_,,,—1 belongs to the interval,, then the probability thap(x) = 1 is P, and if
the density of particles iB_, )1 does not belong to any interval, then the probability that
px)=1 is%. If the point belongs to the interval [80) then the probability thap(x) = 1is
e/(e+1).

In the next section we prove the following lemma:
Lemma 1. The model (1) has a unique ground state.

Obviously, for eaclt, there exists a configuratiart (x), such that the value of the density
of the particles in each block, for all sufficiently largen = n(k) belongs to the interval,:

> )/ (e —cuma) € I
xeZl;xeB_,

Let the value of thgg be 1. A limit Gibbs state corresponding to the boundary conditions
¢* (x) will be denoted byP*.

In spite of the fact that the model (1) has a unique ground state, the set of limit Gibbs
states of the model (1) is very rich.

Theorem 1. At 8 =1 the model (1) has countable number of extreme limit Gibbs skites

Theorem 1 shows the existence of ‘density’ limit Gibbs states characterized by the densities
of particles in typical configurations.

3. Proofs

We prove lemma 1 by showing that the only ground state of the model (1) is the configuration
¥ (x) = 1forallx e Z .

Proof of lemma 1. First of all, let us show that the configuratigi” (x) is a ground state of
model (1). Let a configuration’(x) be a finite perturbation of the configuratig”. Then

the expressiof! (¢’ (x)) — H (%" (x)) is non-negative. Indeed,

H@'(x) = H@" @)= > (U@ ®),¢(B_uw-1)— U@ x), 0¥ (B_y)-1)))

xeZl:x<0

Y @ = "+

xeZtx>0
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Let (U(¢'(x), ¢’ (B_n)-1)) — U(9¥ (x), 9% (B_,x)-1))) be a non-zero term of’. If
¢'(x) = 1, then due to the definitions this term is equakttn P, — 0 for somek and hence
is positive. If¢’(x) = 0, then due to the definitions this term is equabto— In(1 — Py) for
somek and again is positive. On the other hand, all non-zero tern)s 0fire 1. Thus, the
configurationps” (x) is a ground state of the model (1).

Let the configurationp'(x) be a ground state of the model (1) and the Z&p) of all
pointsx’ € Z, such thatp(x’) = 0 is not empty.

If Z(p) N[0, 00) is not empty and contains a point, we define a configuration
¢+1(x) by the following rule: *1(x’) = 1 ande®i(x) = ¢(x) for all x # x’. Now
elt(x) — pl(x) = —1 and we have a contradiction with the fact thatx) is a ground state.

If Z(p) N (—o0, —1] is not empty, we consider the point = maX.cz(y)n(-oo,—1] X, and
define a configuratiop®!(x) by the following rule:p*1(x") = 1 andp®*(x) = ¢*(x) for all
x # x. NO\lN H (o (x)) — H(p(x)) is either—In P, + In(1 — P,) for somek or —oo and

sinceP, > 3, the expressior-In P, +In(1— P;) < 0 and again we have a contradiction with

the fact thatp’(x) is a ground state. The proof of lemma 1 is completed. O
Proof of theorem 1. Let P* be a limit Gibbs state corresponding to the boundary conditions
¢*(x). In order to prove the theorem, we show tii2itcannot be represented as a finite linear
combination of limit Gibbs state®’: for any collectiondy, ..., [, anduz, ..., iy, Where

l; #land0< Wi <1,

P+ iuiPl'}
i=1

For this reason we show that there exists an inteBvgl, such that the restriction of the
measures’ and);_, u; P on B_, are different:

PIB.l # Y wP'[B.]. @)
i=1

We defineB_, as an interval satisfying the conditions> I;, n > [ and the densities of
particles in the restrictions of the configuratiangx) andy’ (x) to B_, belong to the intervals
I, and1;, respectively; that is

Y Y@= el
xeZl;xeB_,
> ¢/ ew —car) €1,
xeZl;xeB_,
Let us define a random variabje, = erzl;xe&n o(x)/(cn — Cp1).
We prove relation (2) by showing that for akyandn, n > k and at sufficiently largé’,

Pi(x-n€ ) >3 ®3)

where P} is the Gibbs distribution corresponding to the boundary conditigis), x
7t —[-V, V.
Indeed, equation (3) implies (2), since from (3) it follows that it /, andrn > max (I;)
thenP} (x—n € I) > Sand} i wiP' (x—n € I) <1 =Y wiP"(x—n € I) < 3.
Suppose thatfV, —-1] = U/_, B_,;.
Itreadily follows from the definition of the potential that all spin variakgés), x € [0, co)
are independent (they take 1 and O with respective probabiities- 1) and /(e +1)). Hence
the restriction of the Gibbs distributioﬁ"j to the setp(x), x € [-V, —1] can be treated as a
one-sided inhomogeneous Markov chain with two states starting at minus infinity [16, 17].
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Thus,

Py(x-n € It) = Py(0_,x—i € Ix)

=Pi(x—r €l [[ Pr(x—i € Ilx—i-1 € ).
i=r—1
Now we estimate the expressiﬂ{j(x_,- € Ii|x-i—1 € Iy). Letx € B_;. Bythe definition
of the potentialP (p(x) = 1|x_i—1 € It) = P;.
Let us define the sequence of positive numkgrs: 1/2(%)1‘.
By the law of large numbers,

Pl(x—i € Lilx-i—1€ I) = Pi(Ix—i — Pl < elx—i—1 € I)
1 42k+l 1

>1— =1- 1— ——
|B—i|€k2 103n+1 = 103n—2k

and sincer > k
Py(x-i € Llx-i-1€ ) >1-107".

Finally,

Pi(x—r el [ Pb(x-i € klx—icae ) > ] @-107)

i=r—1 i=r—1

o0
>|[a-107) > 2
i=1

Relation (3) and hence relation (2) is proved. Thus, model (1) has at least a countable
number of limit Gibbs states corresponding to the boundary conditibing. Since the Gibbs
measurePé corresponding to the volumiéand the boundary conditiogé (x) by the definition
of the potential depends just on the density of particles outsidg [V] and in the definition of
the potential the set of all possible densities is partitioned into the countable number of classes,
one can conclude that the set of all extreme limit Gibbs states is countable. The proof of the
theorem 1 is completed. |

4. Uniqueness conditions in one dimension

Under some natural conditions the conjecture formulated in [14] is correct [5]. Suppose that
the model has a unique ground staté(x) satisfying the following stability condition: for
any finite setA c Z* with length|A|

H(¢'(x)) — H(p*" (x)) > t|A] 4

wherer > 0, |A] is the number of sites of andg’(x) is a perturbation of the ground stat&
on the finite sef, and the potential/ (B) satisfies some natural decreasing conditions. Then
the model has a unique limit Gibbs state at low temperatures [5].

By a natural decreasing potential we mean the following: for any fixed intémwith the
lengthn, the expressiolt” ; 1. g2 prz2— 120 U (B), grows not faster thea”, 0 < o < 1.

It can be easily shown that in model (1) this decreasing condition is not satisfied: the order
of the influence of the blocB_,_; on the blockB_, is equal to the length aB_,!
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5. Final remarks

In [15] a one-dimensional model having a unique ground state and a countable number of
extreme limit Gibbs states was constructed. Since the model in [15] has a countable number
of spin variables, theorem 1 can be considered as an improvement of the results of [15].

The result of [5] is extendible to all values of the temperature.
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