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Abstract. We construct a one-dimensional model with two spins and a unique ground state having
infinitely many extreme limit Gibbs states. This model is closely related to uniqueness conditions
in one-dimensional models.

1. Introduction

The problem of phase transitions in one-dimensional models is an object of constant interest
during the last few decades [1–13]. It is well known that if the pair potentialU(x) of the model
satisfies the condition

∑
x∈Z1;x>0 xU(x) <∞ then the model does not exhibit phase transition

[1–3]. In [4] the absence of phase transitions is proved for the antiferromagnetic model with
the pair potentialU(x) = constant× x−1−α, where 0< α < 1. Based on the methods of [4]
in [14] the following conjecture was formulated: any one-dimensional model with discrete (at
most countable) spin space and with a unique ground state has a unique limit Gibbs state if the
spin space of this model is finite or the potential of this model is translationally invariant.

In this paper we construct a model (1) which disproves this conjecture. We prove that
in spite of the fact that the model (1) has a finite spin space and a unique ground state, it has
infinitely many extreme limit Gibbs states.

2. The model

Consider a model of the classical statistical mechanics on the one-dimensional integer lattice
Z1 with the Hamiltonian

H(ϕ(x)) =
∑

x∈Z1;x<0

U(ϕ(x), ϕ(B−n(x)−1))−
∑

x∈Z1;x>0

ϕ(x) (1)

where the spin variableϕ(x) takes two values 0 and 1, andϕ(B−n(x)) is the restriction of the
configurationϕ(x) to the setB−n(x), B−n, n = 1, 2, . . . is a half-open interval [−cn,−cn−1),
wherec1 = 0, cn =

∑n
i=1 103i+1 atn > 1, the value ofn(x) in (1) is defined by the condition

x ∈ B−n(x).
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In order to define the potentialU of the model, first of all we set two sequences:
ak = 2

3 +
∑k−1

i=1

(
1
4

)i
and bk = 2

3 +
∑k

i=1

(
1
4

)i
, and after that we define the sequence of

half-open intervalsIk, k = 1, 2, . . . , Ik = [ak, bk) and the sequence of positive numbers
Pk = (ak + bk)/2.

The interaction in the model (1) takes place between pointsx and the left neighbour
intervalsBn(x)−1. The potentialU(ϕ(x), ϕ(Bn(x)−1)), which specifies the interaction between
the spin variableϕ(x) at the pointx and the restriction of the configurationϕ(x) to the interval
Bn(x)−1 is defined by the relations:

U(ϕ(x) = 1, ϕ(B−n(x)−1)) = 0

if ∑
x∈Z1;x∈B−n(x)−1

ϕ(x)/(cn − cn−1) = 1

U(ϕ(x) = 0, ϕ(B−n(x)−1)) = ∞
if ∑

x∈Z1;x∈B−n(x)−1

ϕ(x)/(cn − cn−1) = 1

U(ϕ(x) = 1, ϕ(B−n(x)−1)) = − lnPk

if ∑
x∈Z1;x∈B−n(x)−1

ϕ(x)/(cn − cn−1) ∈ Ik

U(ϕ(x) = 0, ϕ(B−n(x)−1)) = − ln(1− Pk)
if ∑

x∈Z1;x∈B−n(x)−1

ϕ(x)/(cn − cn−1) ∈ Ik

U(ϕ(x) = 1, ϕ(B−n(x)−1)) = − ln 2
3

if for any k ∑
x∈Z1;x∈B−n(x)−1

ϕ(x)/(cn − cn−1) 6∈ Ik

U(ϕ(x) = 0, ϕ(B−n(x)−1)) = − ln 1
3

if for any k ∑
x∈Z1;x∈B−n(x)−1

ϕ(x)/(cn − cn−1) 6∈ Ik.

Let IV = [−V, V ] and [−V,−1] = ⋃r
i=1B−i . Suppose that the boundary conditions

ϕk(x), x ∈ Z1− IV are fixed.
The Hamiltonian in the subsetIV is given by

HV (ϕ(x)|ϕk(x)) =
−1∑

x=−V
U(ϕ(x), ϕ(B−n(x)−1))−

V∑
x=0

ϕ(x).

The restriction of the configurationϕ(x) to the intervalIV will be denoted byϕV (x) and the
set of all configurationsϕV (x) will be denoted by8(V ).
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The finite-volume Gibbs state in8(V ) at inverse temperatureβ = T −1 and boundary
conditionsϕk(x) are defined by

P k
V (ϕV (x)|ϕk(x)) = 4−1

V exp(−βHV (ϕV (x)|ϕk(x)))
where4V =

∑
ϕV (x)∈8(V ) exp(−βHV (ϕV (x)|ϕk(x))) is the partition function.

An extreme limit Gibbs state is the weak limit of finite-volume Gibbs states. It is well
known that the set of all limit Gibbs states coincides with the closed convex hull of the set of
weak limits of finite-volume Gibbs states [16].

A configurationϕgr(x) is said to be a ground state, if for any finite perturbationϕ′(x) of
the configurationϕgr(x) the expressionH(ϕ′(x))−H(ϕgr(x)) is non-negative.

It follows from the construction of the Hamiltonian that the model (1) can be interpreted
as an inhomogeneous Markov chain with two states [16, 17] starting at minus infinity, whose
transition probabilities are defined by the following rule:

If the point x belongs to the blockB−n(x), then the probabilities for the variableϕ(x)
depend on the spin variablesϕ(x) belonging to the previous blockB−n(x)−1, namely if the
density of particles inB−n(x)−1 is 1, then the probability thatϕ(x) = 1 is 1, if the density of
particles inB−n(x)−1 belongs to the intervalIk, then the probability thatϕ(x) = 1 isPk and if
the density of particles inB−n(x)−1 does not belong to any intervalIk, then the probability that
ϕ(x) = 1 is 2

3. If the point belongs to the interval [0,∞) then the probability thatϕ(x) = 1 is
e/(e + 1).

In the next section we prove the following lemma:

Lemma 1. The model (1) has a unique ground state.

Obviously, for eachk, there exists a configurationϕk(x), such that the value of the density
of the particles in each blockBn for all sufficiently largen = n(k) belongs to the intervalIk:∑

x∈Z1;x∈B−n
ϕ(x)/(cn − cn−1) ∈ Ik.

Let the value of theβ be 1. A limit Gibbs state corresponding to the boundary conditions
ϕk(x) will be denoted byP k.

In spite of the fact that the model (1) has a unique ground state, the set of limit Gibbs
states of the model (1) is very rich.

Theorem 1. At β = 1 the model (1) has countable number of extreme limit Gibbs statesP k.

Theorem 1 shows the existence of ‘density’ limit Gibbs states characterized by the densities
of particles in typical configurations.

3. Proofs

We prove lemma 1 by showing that the only ground state of the model (1) is the configuration
ϕgr(x) = 1 for all x ∈ Z1.

Proof of lemma 1. First of all, let us show that the configurationϕgr(x) is a ground state of
model (1). Let a configurationϕ′(x) be a finite perturbation of the configurationϕgr . Then
the expressionH(ϕ′(x))−H(ϕgr(x)) is non-negative. Indeed,

H(ϕ′(x))−H(ϕgr(x)) =
∑

x∈Z1;x<0

(U(ϕ′(x), ϕ′(B−n(x)−1))− U(ϕgr(x), ϕgr(B−n(x)−1)))

+
∑

x∈Z1;x>0

(ϕgr(x)− ϕ′(x)) =
∑ ′

+
∑ ′′

.
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Let (U(ϕ′(x), ϕ′(B−n(x)−1)) − U(ϕgr(x), ϕgr(B−n(x)−1))) be a non-zero term of
∑′. If

ϕ′(x) = 1, then due to the definitions this term is equal to− lnPk − 0 for somek and hence
is positive. Ifϕ′(x) = 0, then due to the definitions this term is equal to∞− ln(1− Pk) for
somek and again is positive. On the other hand, all non-zero terms of

∑′′ are 1. Thus, the
configurationϕgr(x) is a ground state of the model (1).

Let the configurationϕ1(x) be a ground state of the model (1) and the setZ(ϕ) of all
pointsx ′ ∈ Z1, such thatϕ1(x ′) = 0 is not empty.

If Z(ϕ) ∩ [0,∞) is not empty and contains a pointx ′, we define a configuration
ϕ1,1(x) by the following rule: ϕ1,1(x ′) = 1 andϕ1,1(x) = ϕ1(x) for all x 6= x ′. Now
ϕ1,1(x)− ϕ1(x) = −1 and we have a contradiction with the fact thatϕ1(x) is a ground state.

If Z(ϕ) ∩ (−∞,−1] is not empty, we consider the pointx ′ = maxx∈Z(ϕ)∩(−∞,−1] x, and
define a configurationϕ1,1(x) by the following rule:ϕ1,1(x ′) = 1 andϕ1,1(x) = ϕ1(x) for all
x 6= x ′. NowH(ϕ1,1(x)) − H(ϕ1(x)) is either− lnPk + ln(1− Pk) for somek or−∞ and
sincePk > 1

2, the expression− lnPk + ln(1−Pk) < 0 and again we have a contradiction with
the fact thatϕ1(x) is a ground state. The proof of lemma 1 is completed. �
Proof of theorem 1. LetP k be a limit Gibbs state corresponding to the boundary conditions
ϕk(x). In order to prove the theorem, we show thatP l cannot be represented as a finite linear
combination of limit Gibbs statesP li : for any collectionsl1, . . . , ls andµ1, . . . , µs , where
li 6= l and 0< µi 6 1,

P l 6=
s∑
i=1

µiP
li .

For this reason we show that there exists an intervalB−n, such that the restriction of the
measuresP l and

∑s
i=1µiP

li onB−n are different:

P l [B−n] 6=
s∑
i=1

µiP
li [B−n]. (2)

We defineB−n as an interval satisfying the conditionsn > li, n > l and the densities of
particles in the restrictions of the configurationsϕli (x) andϕl(x) toB−n belong to the intervals
Ili andIl , respectively; that is∑

x∈Z1;x∈B−n
ϕl(x)/(cn − cn−1) ∈ Il∑

x∈Z1;x∈B−n
ϕli (x)/(cn − cn−1) ∈ Ili .

Let us define a random variableχ−n =
∑

x∈Z1;x∈B−n ϕ(x)/(cn − cn−1).
We prove relation (2) by showing that for anyk andn, n > k and at sufficiently largeV ,

P k
V (χ−n ∈ Ik) > 3

4 (3)

whereP k
V is the Gibbs distribution corresponding to the boundary conditionsϕk(x), x ∈

Z1− [−V, V ].
Indeed, equation (3) implies (2), since from (3) it follows that ifn > l, andn > maxi (li)

thenP l
V (χ−n ∈ Il) > 3

4 and
∑s

i=1µiP
li (χ−n ∈ Il) < 1−∑s

i=1µiP
li (χ−n ∈ Ili ) < 1

4.
Suppose that [−V,−1] = ∪ri=1B−i .
It readily follows from the definition of the potential that all spin variablesϕ(x), x ∈ [0,∞)

are independent (they take 1 and 0 with respective probabilitiese/(e+1) and 1/(e+1)). Hence
the restriction of the Gibbs distributionP k

V to the setϕ(x), x ∈ [−V,−1] can be treated as a
one-sided inhomogeneous Markov chain with two states starting at minus infinity [16, 17].
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Thus,

P k
V (χ−n ∈ Ik) > P k

V (∩ri=nχ−i ∈ Ik)

= P k
V (χ−r ∈ Ik)

n∏
i=r−1

P k
V (χ−i ∈ Ik|χ−i−1 ∈ Ik).

Now we estimate the expressionP k
V (χ−i ∈ Ik|χ−i−1 ∈ Ik). Letx ∈ B−i . By the definition

of the potentialP k
V (ϕ(x) = 1|χ−i−1 ∈ Ik) = Pk.

Let us define the sequence of positive numbersεk = 1/2
(

1
4

)k
.

By the law of large numbers,

P k
V (χ−i ∈ Ik|χ−i−1 ∈ Ik) > P k

V (|χ−i − Pk| < εk|χ−i−1 ∈ Ik)

> 1− 1

|B−i |εk2
= 1− 42k+1

103n+1
> 1− 1

103n−2k

and sincen > k

P k
V (χ−i ∈ Ik|χ−i−1 ∈ Ik) > 1− 10−n.

Finally,

P k
V (χ−r ∈ Ik)

n∏
i=r−1

P k
V (χ−i ∈ Ik|χ−i−1 ∈ Ik) >

n∏
i=r−1

(1− 10−i )

>

∞∏
i=1

(1− 10−i ) > 3
4.

Relation (3) and hence relation (2) is proved. Thus, model (1) has at least a countable
number of limit Gibbs states corresponding to the boundary conditionsϕk(x). Since the Gibbs
measureP k

V corresponding to the volumeV and the boundary conditionsϕk(x)by the definition
of the potential depends just on the density of particles outside [−V, V ] and in the definition of
the potential the set of all possible densities is partitioned into the countable number of classes,
one can conclude that the set of all extreme limit Gibbs states is countable. The proof of the
theorem 1 is completed. �

4. Uniqueness conditions in one dimension

Under some natural conditions the conjecture formulated in [14] is correct [5]. Suppose that
the model has a unique ground stateϕgr(x) satisfying the following stability condition: for
any finite setA ⊂ Z1 with length|A|

H(ϕ′(x))−H(ϕgr(x)) > t |A| (4)

wheret > 0, |A| is the number of sites ofA andϕ′(x) is a perturbation of the ground stateϕgr

on the finite setA, and the potentialU(B) satisfies some natural decreasing conditions. Then
the model has a unique limit Gibbs state at low temperatures [5].

By a natural decreasing potential we mean the following: for any fixed intervalI with the
lengthn, the expression

∑
B⊂Z1;B∩I 6=∅,B∩(Z1−I ) 6=∅ U(B), grows not faster thennα, 0< α < 1.

It can be easily shown that in model (1) this decreasing condition is not satisfied: the order
of the influence of the blockB−n−1 on the blockB−n is equal to the length ofB−n!
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5. Final remarks

In [15] a one-dimensional model having a unique ground state and a countable number of
extreme limit Gibbs states was constructed. Since the model in [15] has a countable number
of spin variables, theorem 1 can be considered as an improvement of the results of [15].

The result of [5] is extendible to all values of the temperature.
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